วันศุกร์ที่ 16 กันยายน พ.ศ. 2554

การใช้ทรัพยากรธรรมชาติอย่างยั่งยืน

0 ความคิดเห็น
  

               การ พัฒนาที่ยั่งยืนจะเกิดขึ้นได้ต้องอาศัยความร่วมมือของมนุษย์ด้วยกันเอง คือมนุษย์ต้องตระหนักว่า การพัฒนาสังคมให้เจริญก้าวหน้าได้จําเป็นต้องพัฒนาให้สมดุลทั้งทางด้าน เศรษฐกิจคุณภาพชีวิต รวมทั้งการอนุรักษ์ทรัพยากรธรรมชาติและสิ่งแวดล้อมด้วย ซึ่งมีหลักการสําคัญของการใช้ประโยชน์ทรัพยากรอย่างยั่งยืนในสาขาต่างๆ ดังนี้
               1. หลักการใช้ประโยชน์ทรัพยากรป่าไม้อย่างยั่งยืน ในการจัดการป่าไม้ต้องคํานึงถึงความยั่งยืนของศักยภาพการอํานวยน้ำ ความยั่งยืนของสิ่งมีชีวิตต่างๆ ภายในระบบนิเวศ โดยที่ยังคงเอื้อประโยชนให้แก่ประชาชน นักวิทยาศาสตร์ และนักท่องเที่ยวต่อไปได้ ในเรื่องนี้คงจะต้องมีการจัดสรรพื้นที่การใช้ประโยชน์ให้เหมาะสม จะต้องมีการควบคุมการใช้ประโยชน์ในแต่ละประเภทให้มีความรัดกุม ชัดเจนเพียงพอที่จะนําไปปฏิบัติ รวมทั้งต้องหามาตรการให้ประชาชนมีส่วนร่วมในการอนุรักษ์และได้ประโยชน์ไปพร้อมๆ กัน
               2. หลักการใช้ประโยชน์ทรัพยากรประมงอย่างยั่งยืน ทรัพยากรประมงเป็นทรัพยากรที่มีลักษณะเฉพาะตัว คือเป็นสาธารณสมบัติ (Commen Property) ดังนั้นทุกคนจึงมีเสรีภาพในการที่จะเข้าไปเก็บเกี่ยวใช้ประโยชน์จากทรัพยากร นี้ สําหรับข้อเสนอในการควบคุมการใช้ทรัพยากรประมงก็คือ การควบคุมอาชญาบัตรประมง เป็นต้น นอกจากนี้การอนุรักษ์ทรัพยากรประมงที่สําคัญอีกประการหนึ่ง ก็คือการอนุรักษ์ความหลากหลายทางชีวภาพของสิ่งมีชีวิตในทะเล โดยจะต้องคุ้มครองให้สิ่งมีชีวิตเหล่านั้นสามารถสืบทอดลูกหลานต่อไปได้ ดังนั้นในการอนุรักษ์ทรัพยากรการประมงจึงจําเป็นต้องศึกษาและกําหนดอาณาเขต พร้อมทั้งควบคุมการใช้ ประโยชน์ พื้นที่ดังกล่าวให้เหมาะสมอีกด้วย
               3. หลักการทําการเกษตรแบบยั่งยืน ปัจจัยที่มีผลให้เกิดระบบเกษตรแบบยั่งยืน มี 2ประการ คือ
                    - ความหลากหลายทางชีวภาพ (Diversity) ของสิ่งมีชีวิตทั้งพืชและสัตว์ที่อาศัยอยู่ในระบบนิเวศเกษตร (Agro-ecosystem) นั้นๆ
                    - ความผสมกลมกลืน ((Harmonization) โดยอาศัยความหลากหลายที่เกิดขึ้นในระบบเกษตรนั้น จะต้องมีความผสมกลมกลืนกัน ในการอาศัยพึ่งพาเกื้อกูลซึ่งกันและกันภายใต้ สถานการณ์ปัจจุบันเกษตรกรจึงต้องเผชิญหน้ากับปัญหาความเสื่อมโทรมของดิน ปัญหาวัชพืช ปัญหาโรคพืชและแมลงศัตรูพืช ดังนั้นการปรับเปลี่ยนแบบแผนการผลิตโดยสร้างความหลากหลายของสิ่งมีชีวิตใน ระบบการผลิตและระบบนิเวศเกษตรจึงมีความจําเป็น ดังนั้นระดับที่เกษตรกรแต่ละรายปรับเปลี่ยนได้ก็จะแตกต่างกันไป บางรายอาจจะนําแบบแผนเก่ากลับมาใช้ได้ บางรายอาจจะปรับสู่ระบบเกษตรผสมผสานที่มีกิจกรรมเพาะปลูกและเลี้ยงสัตว์ที่ เกื้อกูลกัน มีการปรับพื้นที่ เช่น ยกร่อง ขุดบ่อปลามีการทําสวนผลไม้ ปลูกผัก และเลี้ยงสัตว์ รวมถึงการทํานาในอาณาบริเวณที่ใกล้เคียงกัน บางรายที่มีข้อจํากัดในการปรับพื้นที่ และไม่พร้อมที่จะเลี้ยงสัตว์ ก็อาจจะใช้ระบบวนเกษตร ซึ่งอาศัยการพึ่งพากันระหว่างพืชและเน้นความหลากหลายของพืชเป็นหลัก
              4. หลักการพัฒนาอุตสาหกรรมแบบยั่งยืน วิธีการลดมลพิษในระบบการผลิตนั้น อาจทําได้ดังนี้
                    - การจัดการที่ดีในการควบคุมตรวจสอบการทํางานของระบบการผลิตให้เกิดของเสียน้อยที่สุด
                    - เปลี่ยนวัสดุการใช้หรือปัจจัยการผลิต หรือเปลี่ยนสูตรการผลิตที่ก่อมลพิษ
                    - ปรับปรุงเปลี่ยนแปลงเครื่องจักรการผลิตประสิทธิภาพสูงขึ้น
                    - หมุนเวียนนําวัสดุกลับมาใช้ใหม่จากของเสียอุตสาหกรรมในประเทศไทยปัญหาใน การกําจัดของเสียจากโรงงานอุตสาหกรรมก็ยังคงมีอยู่ เพราะว่าเป็นค่าใช้จ่ายที่สูงมาก เงื่อนไขที่สําคัญที่จะนําไปสู่การพัฒนาอุตสาหกรรมแบบยั่งยืน คือความสามารถทางวิทยาศาสตร์และเทคโนโลยีของไทยที่จะจัดการของเสียของตนเอง เพื่อลดความจําเป็นในการนําเข้าเครื่องจักรกลและเทคโนโลยีราคาแพงจากต่าง ประเทศลง
               5. หลักการใช้พลังงานอย่างยั่งยืน ทุกๆ ส่วนในสังคมจะต้องร่วมกันหามาตรการและเป็นผู้ดําเนินการใช้พลังงานอย่างประหยัด
               6. หลักการบริหารจัดการทรัพยากรธรรมชาติให้ยั่งยืน การควบคุมการใช้ประโยชน์ทรัพยากรธรรมชาติที่ประสานกลมกลืนกับธรรมชาติ เปิดโอกาสให้กลไกของธรรมชาติดําเนินไปได้อย่างต่อเนื่อง โดยสามารถรักษาความหลากหลายของสิ่งมีชีวิตในระบบนิเวศนั้นให้ดํารงอยู่ได้ ในการใช้ทรัพยากรอย่างยั่งยืน จะต้องคํานึงถึงการย่อยสลายในระบบนิเวศด้วย เพราะกระบวนการย่อยสลายจะเป็นกระบวนการสําคัญในการทําให้ทรัพยากรเหล่านั้น ได้รับการหมุนเวียนกลับมาใช้ใหม่จึงเป็นเรื่องจําเป็นที่รัฐบาลจะต้องกําหน ดแนวทางในการจัดการทรัพยากรธรรมชาติให้ชัดเจน โดยจําแนกทรัพยากรตามศักยภาพการใช้ประโยชน์และคุณค่าทางนิเวศวิทยาถ้าเรา สามารถใช้ทรัพยากรอย่างยั่งยืน เราก็จะสามารถมีชีวิตอยู่ร่วมกับสิ่งมีชีวิตอื่นๆ ได้อีกมาก ความอุดมสมบูรณ์ของแม่น้ำและดิน ความสดชื่นของอากาศและความสวยงามตามธรรมชาติก็คงจะหวนกลับมาและอยู่กับลูก หลานของเราได้ต่อไป
               7. การพัฒนาการท่องเที่ยวแบบยั่งยืน หมายถึงการพัฒนาที่สามารถตอบสนองความต้องการของนักท่องเที่ยว และผู้เป็นเจ้าของท้องถิ่นในปัจจุบัน โดยมีการปกป้องและสงวนรักษาโอกาสต่างๆ ของอนุชนรุ่นหลังด้วย การท่องเที่ยวนี้มีความหมายรวมถึงการจัดการทรัพยากรเพื่อตอบสนองความจําเป็นทางเศรษฐกิจ สังคมและความงามทางสุนทรียภาพ ในขณะที่สามารถรักษาเอกลักษณ์ทางวัฒนธรรมและระบบนิเวศด้วย โดยแนวทางการสร้างกรอบนโยบายและแนวทางปฏิบัติดังนี้
                    - มุ่งพัฒนาการท่องเที่ยวในประเทศก่อนการท่องเที่ยวระหว่างประเทศ
                    - ต้องคํานึงถึงขีดความสามารถในการรองรับ (Carrying capacity) ทุกๆ ด้าน
                    - ประชาชนในท้องถิ่นจะต้องมีส่วนร่วมในการตัดสินใจในโครงการต่างๆ ที่จะมีผลกระทบต่อวิถีชีวิตของคนส่วนใหญ่ในพื้นที่ (Local participation)
                    - มุ่งใช้วัสดุและผลิตภัณฑ์ในท้องถิ่น (Local product)
                    - เน้นกระจายรายได้สู้ท้องถิ่น
                    - คุณค่าของสิ่งแวดล้อมและวัฒนธรรมนั้นเป็นคุณค่าที่มีอยู่ในตัวเอง
                    - การปรับตัวเปลี่ยนแปลงนั้นเป็นสิ่งจําเป็น แต่ทั้งนี้ต้องไม่ขัดกับหลักการดังกล่าวข้างต้น
                    - ภาคธุรกิจการท่องเที่ยว องค์กรด้านสิ่งแวดล้อมและรัฐมีหน้าที่จะต้องทํางานร่วมกันอย่างเสมอภาค และวางอยู่บนหลักการข้างต้น

วัฏจักรของสาร

0 ความคิดเห็น
วัฎจักรของสาร
แร่ธาตุและสารต่างๆ ที่เป็นองค์ประกอบทางกายภาพในระบบนิเวศ ได้แก่ ออกซิเจน คาร์บอนไดออกไซด์ ไนโตรเจน ฟอสฟอรัส และน้ำ เป็นสิ่งจำเป็นต่อการดำรงชีวิตของสิ่งมีชีวิตในธรรมชาติ แร่ธาตุและสารต่างๆ จะมีปริมาณคงที่และสมดุล สิ่งมีชีวิตใช้สารเหล่านี้ในกระบวนการดำรงชีวิต และการปล่อยสารดังกล่าวกลับคืนสู่ธรรมชาติหมุนเวียนกันเป็นวัฎจักรดังนี้
1. การหมุนเวียนของน้ำในระบบนิเวศ
พื้นผิวของโลกประกอบด้วยแหล่งน้ำประมาณ 3ใน4 ส่วน น้ำเป็นสิ่งจำเป็นอย่างยิ่งต่อสิ่งมีชีวิต ทุกชนิด เพราะน้ำเป็นองค์ประกอบส่วนใหญ่ของเซลล์ เป็นตัวกลางสำคัญของกระบวนการต่างๆ ในสิ่งมีชีวิต และเป็นแหล่งที่อยู่ดังแผนภาพ
2. การหมุนเวียนก๊าซไนโตรเจนในระบบนิเวศ
สารประกอบไนโตรเจนจะมีอยู่ในดิน ในน้ำ และเป็นองค์ประกอบหลักของอากาศที่ห่อหุ้มโลก เป็นแร่ธาตุหลักสำคัญ 1 ใน 4 ธาตุที่สิ่งมีชีวิตทุกชนิดต้องการ เพื่อนำไปสร้างโปรตีนสำหรับ การเจริญเติบโตในรูปของสารประกอบไนโตรเจน การหมุนเวียนของไนโตรเจนจึงต้องผ่านสิ่ง มีชีวิตเสมอ ดังภาพ
3. การหมุนเวียนของคาร์บอนในระบบนิเวศ
คาร์บอน (C) เป็นธาตุสำคัญที่เป็นองค์ประกอบสำคัญของอินทรีย์สารในร่างกายสิ่งมีชีวิต เช่น คาร์โบไฮเดรต โปรตีน ไขมัน ฯลฯ และเป็นสารอินทรีย์ที่มีอยู่ในระบบนิเวศ ในบรรยากาศ มี ก๊าซคาร์บอนไดออกไซด์ซึ่งเป็นองค์ประกอบสำคัญที่พืชนำมาใช้ในกระบวนการ สังเคราะห์แสง ในระบบนิเวศการหมุนเวียนของคาร์บอนต้องผ่านสิ่งมีชีวิตเสมอ แต่คาร์บอนในธรรมชาติเกิด จากการสะสมของตะกอนซากพืชซากสัตว์ใต้ผิวโลก เป็นเวลานานจนมีการเปลี่ยนสภาพเป็น ถ่านหินและปิโตรเลียม ซึ่งเป็นพลังงานแหล่งใหญ่ เมื่อมีการนำมาใช้ประโยชน์เป็นเชื้อเพลิงก็ จะมีการคืนคาร์บอนกลับสู่บรรยากาศในรูปของคาร์บอนไดออกไซด์ และหมุนเวียนกลับให้พืช นำไปใช้ประโยชน์ต่อไป ดังนั้นคาร์บอนจึงหมุนเวียนเป็นวัฎจักรที่อยู่ในระบบนิเวศอย่างสมดุล ดังภาพ
4. การหมุนเวียนฟอสฟอรัสในระบบนิเวศ
ฟอสฟอรัสเป็นธาตุสำคัญ 1 ใน 3 ชนิด สำหรับการเจริญเติบโตของพืช ในสัตว์ ฟอสฟอรัสเป็น ธาตุสำคัญต่อการสร้างโครงสร้างของร่างกายให้แข็งแรง เป็นส่วนประกอบที่สำคัญของกระดูก และฟันเกี่ยวข้องกับการใช้พลังงานของเซลล์
ในระบบนิเวศการหมุนเวียนฟอสฟอรัสโดยพืชนำฟอสฟอรัสจากธรรมชาติเข้ามาในลักษณะ ของสารประกอบฟอสเฟตที่ละลายน้ำได้ แล้วนำไปสะสมไว้ในเซลล์ต่างๆ เมื่อสัตว์กินพืชก็จะ ได้รับฟอสฟอรัส โดยผ่านกระบวนการกินเข้าสู่ร่างกาย สัตว์นำฟอสฟอรัสที่ได้ไปสร้างกระดูก และฟัน และใช้ในขบวนการอื่นๆ เมื่อสัตว์และพืชตายลง ซากพืชซากสัตว์จะทับถมลงสู่ดิน ฟอสฟอรัสบางส่วนพืชจะดูดซึมไปใช้ใหม่ บางส่วนถูกแบคทีเรียบางกลุ่มที่อยู่ในดิน ย่อยสลาย เป็นกรดฟอสฟอริก ทำปฏิกิริยากับสารในดิน เกิดเป็นสารประกอบฟอสฟอรัส กลับคืนไปทับถม เป็นหินฟอสเฟต ในดิน ในน้ำ ในทะเล และมหาสมุทร โดยเฉพาะในทะเล สารประกอบของฟอสฟอรัสจะรวมกับ ซากของหินปะการัง เปลือกหอย และโครงกระดูกสัตว์ต่างๆ เมื่อผ่านกระบวนการสึกกร่อนตาม ธรรมชาติ แพลงตอนพืชและสัตว์ในทะเลนำเอาสารประกอบของฟอสฟอรัสดังกล่าวไปใช้เป็น ห่วงโซ่อาหารและสายใยอาหารในทะเลและมหาสมุทรต่อไป ฟอสฟอรัสก็จะหมุนเวียนคืนสู่ ธรรมชาติเป็นวัฎจักรเช่นนี้ไปไม่มีที่สิ้นสุด ดังแผนภาพ
การหมุนเวียนสารในระบบนิเวศในธรรมชาติไม่ได้แยกจากกัน โดยสิ้นเชิง แต่ธาตุต่างๆ และ สารประกอบจะถ่ายเทไหลเข้าและออกร่วมกันอยู่ภายในระบบนิเวศ ดังตัวอย่างของการหมุน เวียนแร่ธาตุในระบบนิเวศป่าไม้ มีการเคลื่อนตัวของแร่ธาตุต่างๆ เข้าและออกจากระบบ ส่วน ใหญ่แร่ธาตุในดินจะไหลเข้าสู่ระบบโดยผ่านทางน้ำฝน ส่วนที่หมุนเวียนอยู่ภายในสิ่งมีชีวิตจะ เริ่มจากการที่พืชได้รับแร่ธาตุ ซึ่งพืชดูดเข้ามาทางรากและลำเลียงขึ้นไปบนเรือนยอดเพื่อการ สังเคราะห์สาร แร่ธาตุดังกล่าวจะสะสมในใบและส่วนต่างๆ เมื่อกิ่งไม้และใบไม้หลุดร่วงลงสู่ พื้นดิน ก็จะเน่าเปื่อยและถูกย่อยสลายโดยกลุ่มผู้ย่อยสลายอินทรีย์สาร ทำให้แร่ธาตุที่สะสมใน พืชกลับคืนสู่ดินและสะสมอยู่ในดินเป็นปริมาณมาก ในที่สุดก็จะหมุนเวียนกลับไปสู่พืชเรือนยอด อีก
ระบบนิเวศทุกระบบในโลกของสิ่งมีชีวิต เป็นโครงสร้างที่แสดงถึงความสัมพันธ์ในแง่การถ่าย ทอดพลังงานที่อยู่ในโมเลกุลของสาร ระหว่างกลุ่มสิ่งมีชีวิตที่เป็นผู้ผลิต ผู้บริโภคพืช ผู้บริโภค สัตว์ผู้ย่อยสลายอินทรีย์สาร และยังมีความสัมพันธ์ในแง่ของการหมุนเวียนสารระหว่างสิ่งมีชีวิต กับสิ่งแวดล้อม

ภาพประกอบแสดงการหมุนเวียน
ภาพแสดงการหมุนเวียนของไนโตรเจน
ภาพแสดงการหมุนเวียนของคาร์บอน
ภาพแสดงการหมุนเวียนของฟอสเฟอรัส

ความสัมพันธ์ระหว่างสิ่งมีชีวิตในระบบนิเวศ

0 ความคิดเห็น



                 

รูปที่ 1.2 ห่วงโซ่อาหาร

        พลังงานทั้งหลายในระบบนิเวศนี้เกิดจากแสงอาทิตย์ พลังงานแสงถูกถ่ายทอดโดยเปลี่ยนรูปเป็นพลังงานศักย์  สะสมไว้ในสารอาหาร ซึ่งเกิดจากกระบวนการสังเคราะห์ด้วยแสง แล้วถูกถ่ายทอดไปสู่ผู้บริโภคลำดับต่างๆ ในระบบนิเวศ ซึ่งมีความสัมพันธ์กันอย่างซับซ้อนในรูปแบบที่เรียกว่า สายใยอาหาร  (food web)
 รูปที่ 1.3 สายใยอาหาร

ความสัมพันธ์ระหว่างสิ่งมีชีวิต

             ความสัมพันธ์ระหว่างสิ่งมีชีวิตในระบบนิเวศ แบ่งออกเป็น 2 ลักษณะคือ

1. ความสัมพันธ์ระหว่างสิ่งมีชีวิตชนิดเดียวกัน
2. ความสัมพันธ์ระหว่างสิ่งมีชีวิตต่างชนิดกัน

           เพื่อให้ง่ายต่อความเข้าใจ  จึงมีการใช้เครื่องหมายต่อไปนี้แสดงความสัมพันธ์ระหว่างกลุ่มสิ่งมีชีวิตที่อาศัยรวมกัน

+ หมายถึง การได้ประโยชน์จากอีกฝ่ายหนึ่ง
-  หมายถึง การเสียประโยชน์ให้อีกฝ่ายหนึ่ง
0 หมายถึง การไม่ได้ประโยชน์ แต่ก็ไม่เสียประโยชน์
         ความสัมพันธ์ระหว่างสิ่งมีชีวิตในระบบนิเวศแบ่งได้เป็น 3 ประเภทใหญ่ คือ

         1. การได้รับประโยชน์ร่วมกัน (mutualism) เป็นการอยู่ร่วมกันของสิ่งมีชีวิต 2 ชนิดที่ได้ประโยชน์ด้วยกันทั้งสองชนิด ใช้สัญลักษณ์ +, + เช่น
              • แมลงกับดอกไม้ แมลงดูดน้ำหวานจากดอกไม้เป็นอาหาร และดอกไม้ก็มีแมลงช่วยผสมเกสร
              • นกเอี้ยงกับควาย นกเอี้ยงได้กินแมลงต่าง ๆ จากหลังควาย และควายก็ได้นกเอี้ยงช่วยกำจัดแมลงที่มาก่อความรำคาญ
              • มดดำกับเพลี้ย เพลี้ยได้รับประโยชน์ในการที่มดดำพาไปดูดน้ำเลี้ยงที่ต้นไม้ และมดดำก็จะได้รับน้ำหวาน
              • ปูเสฉวนกับดอกไม้ทะเล (sea  anemone) ปูเสฉวนอาศัยดอกไม้ทะเลพรางตัวจากศัตรูและยังอาศัยเข็มพิษจากดอกไม้ทะเล ป้องกันศัตรู ส่วนดอกไม้ทะเลก็ได้รับอาหารจากปูเสฉวนที่กำลังกินอาหารด้วย
              • ไลเคน (lichen) คือ การดำรงชีวิตร่วมกันของรากับสาหร่าย ซึ่งเป็นการอยู่แบบที่สิ่งมีชีวิตทั้ง 2 ชนิดต่างก็ได้รับประโยชน์ สาหร่ายมีสีเขียวสร้างอาหารเองได้โดยกระบวนการสังเคราะห์ด้วยแสงแต่ต้อง อาศัยความชื้นจากรา ส่วนราได้รับธาตูอาหารจากสาหร่าย ได้แก่ ไนโตรเจนจากการตรึงไนโตรเจน  นอกจากนั้นราบางชนิดอาจสร้างสาร พิษ  ซึ่งป้องกันไม่ให้สัตว์อื่นกินไลเคนเป็นอาหาร  และรายังสร้างกรดช่วยใน การละลายหินและเปลือกไม้  ทำให้ไลเคนดูดซับธาตุอาหารได้ดี


รูปที่ 1.4 ความสัมพันธ์แบบ mutualism ระหว่างราและสาหร่าย

              •  แบคทีเรียไรโซเบี ยม  (Rhizobium)  ในปมรากพืชวงศ์ถั่ว  ตรึงไนโตรเจนจากอากาศให้แก่ราก ถั่ว  ในขณะเดียวกันแบคทีเรียก็ได้รับก๊าซคาร์บอนไดออกไซด์และแร่ธาตุจากต้น ถั่ว
รูปที่ 1.5 ปมรากถั่วซึ่งภายในมีแบคทีเรียไรโซเบียม
              • โปรโตซัวในลำไส้ปลวก  ปลวกไม่มี น้ำย่อยสำหรับย่อยเซลลูโลสในเนื้อไม้ โปรโตซัวช่วยในการย่อย จนทำให้ปลวกสามารถกินไม้ได้ และโปรโตรซัวก็ได้รับสารอาหารจากการย่อยสลายเซลลูโลสด้วย

รูปที่ 1.6 โปรโตซัวในลำไส้ปลวกช่วยย่อยเซลลูโลส
              • แบคทีเรียที่อาศัยอยู่ในสำไส้ใหญ่ของคน  แบคทีเรียได้รับอาหารและที่อยู่ อาศัยจากลำไส้ของคน ส่วนคนจะได้รับวิตามินบี 12 จากแบคทีเรีย

         2. ภาวะอิงอาศัยหรือภาวะเกื้อกูล  (commensalism)  เป็นการอยู่ ร่วมกันของสิ่งมีชีวิตโดยที่ฝ่ายหนึ่งได้ประโยชน์ ส่วนอีกฝ่ายหนึ่งไม่ได้ประโยชน์แต่ก็ไม่เสียประโยชน์  (+,0) เช่น

              •  ปลาฉลามกับเหาฉลาม  เหาฉลามอาศัยอยู่ใกล้ตัวปลาฉลามและกิน เศษอาหารจากปลาฉลาม ซึ่งปลาฉลามจะไม่ได้ประโยชน์ แต่ก็ไม่เสียประโยชน์
              •  พลูด่างกับต้นไม้ใหญ่  พลูด่างอาศัยร่มเงาและความชื้นจาก ต้นไม้โดยต้นไม้ไม่ได้ประโยชน์แต่ขณะเดียวกันก็ไม่เสียประโยชน์อะไร
              •  กล้วยไม้กับต้นไม้ใหญ่  กล้วยไม้ยึดเกาะที่ลำต้นหรือกิ่ง ของต้นไม้ซึ่งได้รับความชื้นและแร่ธาตุจากต้นไม้ โดยที่ต้นไม้ไม่ได้รับประโยชน์ แต่ก็ไม่เสียประโยชน์อะไร
              •  เพรียงที่อาศัยเกาะบนผิวหนังของวาฬเพื่อหาอาหาร  วาฬไม่ได้ประโยชน์ แต่ก็ไม่เสียประโยชน์


รูปที่   1.7 ปลาฉลามกับเหาฉลาม

รูปที่ 1.8 กล้วยไม้กับต้นไม้ใหญ่

         3. ฝ่ายหนึ่งได้ประโยชน์และอีกฝ่ายหนึ่งเสียประโยชน์ ใช้สัญลักษณ์ +, - ซึ่งแบ่งเป็น 2 แบบ คือ

               ก.  การล่าเหยื่อ  (predation) เป็นความสัมพันธ์โดยมีฝ่าย หนึ่งเป็นผู้ล่า  (predator)  และอีกฝ่ายหนึ่งเป็นเหยื่อ (prey) หรือเป็น อาหารของอีกฝ่าย เช่น งูกับกบ

               ข.  ภาวะปรสิต  (parasitism) เป็นความสัมพันธ์ของสิ่งมี ชีวิตที่มีฝ่ายหนึ่งเป็นผู้เบียดเบียน  เรียกว่า ปรสิต (parasite) และอีกฝ่ายหนึ่งเป็นเจ้าของบ้าน (host)
                      • ต้นกาฝากเช่น  ฝอยทองที่ขึ้นอยู่บนต้นไม้ใหญ่ จะดูดน้ำและอาหารจากต้นไม้ใหญ่
                      • หมัด เห็บ ไร พยาธิต่าง ๆ ที่อาศัยอยู่กับร่างกายคนและสัตว์
                      • เชื้อโรคต่าง ๆ ที่ทำให้เกิดโรคกับคนและสัตว์
                นอกจากนี้ยังมีความสัมพันธ์แบบภาวะมีการย่อยสลาย (saprophytism) ใช้สัญลักษณ์ +, 0 เป็นการดำรงชีพของกลุ่มผู้ย่อยสลายสารอินทรีย์ เช่น เห็ด รา แบคทีเรีย และจุลินทรีย์

รูปที่ 1.9 รูปเห็ด



รูปที่ 1.10 รูปแบคทีเรีย
            
             การถ่ายทอดพลังงานในห่วงโซ่อาหาร
               การถ่ายทอดพลังงาน  ในห่วงโซ่อาหาร อาจแสดงในในลักษณะของสามเหลี่ยมปิรามิดของสิ่งมีชีวิต (ecological pyramid) แบ่งได้  3 ประเภทตามหน่วยที่ใช้วัดปริมาณของลำดับขั้นในการกิน

1. ปิรามิดจำนวนของสิ่งมีชีวิต (pyramid of number)

        แสดงจำนวนสิ่งมีชีวิตเป็นหน่วยตัวต่อพื้นที่  โดยทั่วไปพีระมิดจะมี ฐานกว้างซึ่งหมายถึง  มีจำนวนผู้ผลิตมากที่สุด และจำนวนผู้บริโภคลำดับต่างๆ ลดลงมา  


  
 รูปที่ 1.11 ปิรามิดจำนวนของสิ่งมีชีวิต

       แต่การวัดปริมาณพลังงานโดยวิธีนี้  อาจมีความ คลาดเคลื่อนได้เนื่องจากสิ่งมีชีวิตไม่ว่าจะเป็นเซลล์เดียวหรือหลาย เซลล์  ขนาดเล็กหรือขนาดใหญ่  เช่นไส้เดือน จะนับเป็นหนึ่งเหมือนกัน หมด  แต่ความเป็นจริงนั้นในแง่ปริมาณพลังงานที่ได้รับหรืออาหารที่ผู้บริโภค ได้รับจะมากกว่าหลายเท่า   ดังนั้นจึงมีการพัฒนารูปแบบในรูปของปิรามิดมวล ของสิ่งมีชีวิต

2.ปิรามิดมวลของสิ่งมีชีวิต (pyramid of mass)

         โดยปิรามิดนี้แสดงปริมาณของสิ่งมีชีวิตในแต่ละลำดับขั้นของการกิน โดยใช้มวลรวมของน้ำหนักแห้ง (dry weight) ของสิ่งมีชีวิตต่อพื้นที่แทนการ นับจำนวน ปิรามิดแบบนี้มีความแม่นยำมากกว่าแบบที่ 1 แต่ในความเป็นจริงจำนวนหรือมวล ของสิ่งมีชีวิตมีการเปลี่ยนแปลงตามช่วงเวลา เช่น ตามฤดูกาลหรือ  ตามอัตราการเจริญเติบโต  ปัจจัยเหล่านี้ จึงเป็นตัวแปร ที่สำคัญ  





  รูปที่ 1.12 ปิรามิดมวลของสิ่งมีชีวิต

      อย่างไรก็ดีถึงแม้มวลที่มากขึ้นเช่นต้นไม้ใหญ่ จะผลิตเป็นสารอาหารของผู้บริโภคได้มาก   แต่ก็ยังน้อยกว่าที่ผู้บริโภคได้ จากสิ่งมีชีวิตเล็กๆ  เช่น  สาหร่ายหรือแพลงก์ตอน  ทั้งๆที่มวล หรือปริมาณ ของสาหร่ายหรือแพลงก์ตอนน้อยกว่ามาก ดังนั้นจึงมีการพัฒนาแนวความคิดในการแก้ปัญหานี้ โดยในการเสนอรูปของปิรามิดพลังงาน ( pyramid of energy)
 
        
  รูปที่ 1.13 การกินเป็นทอดๆ

3. ปิรามิดพลังงาน ( pyramid of energy)

     เป็นปิรามิดแสดงปริมาณพลังงานของแต่ละลำดับชั้นของการกินซึ่งจะมีค่าลด ลงตามลำดับขั้นของการโภค จากลำดับที่ 1 ไป 2 ไป 3 และ 4 ดังแสดงในรูป

 รูปที่ 1.14 ปิรามิดพลังงาน
       ในระบบนิเวศ  ทั้งสสารและแร่ธาตุต่างๆ จะถูกหมุนเวียนกันไป ภายใต้เวลาที่เหมาะสม  และมีความสมดุล ซึ่งกันและกันวนเวียนกันเป็นวัฏจักรที่เรียกว่า  วัฏจักรของ สสาร (matter cycling) ซึ่งเปรียบเสมือนกลไกสำคัญ ที่เชื่อมโยงระหว่างสสารและพลังงานจากธรรมชาติสู่สิ่งมีชีวิตแล้วถ่ายทอด พลังงานในรูปแบบของการกินต่อกันเป็นทอดๆ  ผลสุดท้ายวัฎจักรจะสลายในขั้นตอน ท้ายสุดโดยผู้ย่อยสลายกลับคืนสู่ธรรมชาติ  วัฏจักรของสสารที่มีความสำคัญต่อ สมดุลของระบบนิเวศ  ได้แก่ วัฎจักรของน้ำ  วัฎจักรของไนโตรเจน วัฎจักรของ คาร์บอนและ วัฎจักรของฟอสฟอรัส

โซ่อาหาร (food chain)

0 ความคิดเห็น
เป็นการเคลื่อนย้ายพลังงาน และธาตุอาหารในระบบนิเวศ ผ่านผู้ผลิต ผู้บริโภคในระดับต่างๆ โดยการกินกันเป็นทอดๆ ในลักษณะเป็นเส้นตรง กล่าวคือ สิ่งมีชีวิตชนิดหนึ่งกินสิ่งมีชีวิตชนิดอื่นเพียงชนิดเดียวเท่านั้น โซ่อาหารแบ่งออกเป็น 2 แบบ คือ1. โซ่อาหารแบบจับกิน (Grazing Food chain) เป็นโซ่อาหารที่เริ่มต้นที่พืชผ่านไปยังสัตว์กินพืชและสัตว์กินสัตว์ตาม ลำดับ ตัวอย่างนี้พบได้ทั่วไปในชุมชนป่า หรือชุมชนมหาสมุทร ตัวอย่าง เช่น
พืชผัก ——> แมลงกินพืช —–> กบ ——-> งู ——-> เหยี่ยว
2. โซ่อาหารแบบกินเศษอินทรีย์ (Detritus food chain) เป็นโซ่อาหารที่เริ่มจากสารอนินทรีย์จากซากของสิ่งมีชีวิตถูกย่อยสลายด้วย ผู้ย่อยสลาย ซึ่งส่วนใหญ่เป็นพวกจุลินทรีย์และจะถูกกินโดยสัตว์และต่อไปยังผู้ล่าอื่นๆ
โซ่อาหาร
สายใยอาหาร (food web)
ในระบบของโซ่อาหารในระบบของการถ่ายทอดจะถ่ายทอดโดยตรงจากชีวิตหนึ่งไปสู่อีกชีวิตหนึ่ง เนื่อง จากสิ่งมีชีวิตหนึ่งอาจกินอาหารหลายชนิด หลายระดับและเหยื่อชนิดเดียวกันก็อาจถูกสิ่งมีชีวิตหลายชนิดกิน ลักษณะดังกล่าวได้เกิดความซับซ้อนกันในระบบของโซ่อาหารซึ่งเรียกว่า สายใยอาหาร (food web) ซึ่งสายใยอาหารจะประกอบด้วย โซ่อาหารหลายสายที่เชื่อมโยงกันอันแสดงถึงความสัมพันธ์อันสลับซับซ้อนของสิ่งมีชีวิตในชุมชนของระบบนิเวศ ซึ่งยิ่งสายใยอาหารมีความสลับซับซ้อนมากเพียงใด ก็ได้แสดงให้เห็นถึงระบบนิเวศที่มีระบบความสมดุลสูง อันเนื่องมาจากมีความหลากหลายของชีวิตในระบบ
สายใยอาหาร
การถ่ายทอดพลังงานในโซ่อาหาร การถ่ายทอดพลังงานในโซ่อาหารอาจแสดงในในลักษณะของสามเหลี่ยมพีรามิดของสิ่งมีชีวิต (ecological pyramid) แบ่ง ได้ 3 ประเภทตามหน่วยที่ใช้วัดปริมาณของลำดับขั้นในการกิน
1. พีรามิดจำนวนของสิ่งมีชีวิต (pyramid of number) แสดงจำนวนสิ่งมีชีวิตเป็นหน่วยตัวต่อพื้นที่ โดยทั่วไปพีระมิดจะมีฐานกว้าง ซึ่ง หมายถึง มีจำนวนผู้ผลิตมากที่สุด และจำนวน ผู้บริโภคลำดับต่างๆ ลดลงมา แต่การวัดปริมาณพลังงานโดยวิธีนี้ อาจมีความคลาดเคลื่อนได้เนื่องจากสิ่งมีชีวิตไม่ว่าจะเป็นเซลล์เดียว หรือหลายเซลล์ ขนาดเล็กหรือขนาดใหญ่ เช่น ไส้เดือน จะนับเป็นหนึ่งเหมือนกันหมด แต่ความเป็นจริงนั้นในแง่ปริมาณพลังงานที่ได้รับหรืออาหารที่ผู้บริโภคได้ รับจะมากกว่าหลายเท่า ดังนั้นจึงมีการพัฒนารูปแบบในรูปของพิรามิดมวลของสิ่งมีชีวิต
pyramid of number

2. พีรามิดมวลของสิ่งมีชีวิต (pyramid of mass) โดยพิรามิดนี้แสดงปริมาณของสิ่งมีชีวิตในแต่ละลำดับขั้นของการกินโดยใช้มวลรวมของน้ำหนักแห้ง (dry weight) ของสิ่งมีชีวิตต่อพื้นที่แทนการนับจำนวนพีรามิดแบบนี้มีความแม่นยำมากกว่า แบบที่ 1 แต่ในความเป็นจริงจำนวนหรือมวล ของสิ่งมีชีวิต มีการเปลี่ยนแปลงตามช่วงเวลา เช่น ตามฤดูกาลหรือ ตามอัตราการเจริญเติบโต ปัจจัยเหล่านี้ จึงเป็นตัวแปร ที่สำคัญ อย่างไรก็ดีถึงแม้มวลที่มากขึ้นเช่นต้นไม้ใหญ่ จะผลิตเป็นสารอาหารของผู้บริโภคได้มากแต่ก็ยังน้อยกว่าที่ผู้บริโภคได้จาก สิ่งมีชีวิตเล็กๆ เช่น สาหร่ายหรือแพลงก์ตอน ทั้งๆที่มวล หรือปริมาณของสาหร่ายหรือแพลงก์ตอนน้อยกว่ามาก ดังนั้น จึงมีการพัฒนาแนวความคิดในการแก้ปัญหานี้ โดยในการเสนอรูปของพีรามิดพลังงาน (pyramid of energy)
pyramid of mass
3. พีรามิดพลังงาน (pyramid of energy) เป็นปิรามิดแสดงปริมาณพลังงานของแต่ละลำดับชั้นของการกินซึ่งจะมีค่าลดลงตามลำดับขั้นของการโภค
pyramid of energy
ที่มาของภาพ : http://www.gang_diary.th.gs/web-g/a-tiam/page6.html

ใน ระบบนิเวศน์ ทั้งสสารและแร่ธาตุต่างๆ จะถูกหมุนเวียนกันไปภายใต้เวลาที่เหมาะสมและมีความสมดุลซึ่งกัน และกัน วนเวียนกันเป็นวัฏจักรที่เรียกว่า วัฏจักรของสสาร (matter cycling) ซึ่งเปรียบเสมือนกลไกสำคัญ ที่เชื่อมโยงระหว่าง สสาร และพลังงานจากธรรมชาติสู่สิ่งมีชีวิตแล้วถ่ายทอดพลังงานในรูปแบบของการกิน ต่อกันเป็นทอดๆ ผลสุดท้ายวัฏจักรจะสลายใน ขั้นตอนท้ายสุดโดยผู้ย่อยสลายกลับคืนสู่ธรรมชาติ วัฏจักรของสสารที่มีความสำคัญต่อสมดุลของระบบนิเวศ ได้แก่ วัฏจักรของน้ำ วัฏจักรของไนโตรเจน วัฏจักรของคาร์บอนและ วัฏจักรของฟอสฟอรัส
วัฏจักรของน้ำ

ระบบนิเวศ

0 ความคิดเห็น

1.  ความหมายของระบบนิเวศ (Ecosystem)
                   ระบบนิเวศเป็นหน่วยที่สำคัญที่สุดในการศึกษาความสัมพันธ์ระหว่างสิ่งมีชีวิต   และสิ่งแวดล้อม  เพราะประกอบไปด้วยสิ่งมีชีวิตหลากหลายชนิด  มีการแลกเปลี่ยนสสาร แร่ธาตุ และพลังงานกับสิ่งแวดล้อม  โดยผ่านห่วงโซ่อาหาร (food chain)  มีลำดับของการกินเป็นทอด ๆ ทำให้สสารและแร่ธาตุมีการหมุนเวียนไปใช้ในระบบจนเกิดเป็นวัฏจักร  ทำให้มีการถ่ายทอดพลังงานไปตามลำดับขั้นเป็นช่วง ๆในห่วงโซ่อาหารได้  การจำแนกองค์ประกอบของระบบนิเวศ ส่วนใหญ่จะจำแนกได้เป็นสององค์ประกอบใหญ่ ๆ คือ องค์ประกอบที่มีชีวิตและองค์ประกอบที่ไม่มีชีวิต


ภาพที่ 9. 1 แบบจำลองระบบนิเวศขนาดเล็กแสดงให้เห็นถึงกระบวนการสำคัญ: การไหลของพลังงาน (energy) และ การหมุนเวียนสารเคมี (chemical cycling)


2.  องค์ประกอบของระบบนิเวศ
                 การจำแนกองค์ประกอบของระบบนิเวศแยกตามหน้าที่ในระบบ ได้แก่พวกที่สร้างอาหารได้เอง (autotroph) และสิ่งมีชีวิตได้รับอาหารจากสิ่งมีชีวิตอื่น (heterotroph) อย่างไรก็ตามการจำแนกองค์ประกอบของระบบนิเวศโดยทั่วไปมักประกอบไปด้วยองค์ประกอบที่มีชีวิต (biotic) และองค์ประกอบที่ไม่มีชีวิต (abiotic)
                         2.1 องค์ประกอบที่มีชีวิต (biotic component) ได้แก่
                                    2.1.1 ผู้ผลิต (producer or autotrophic) ได้แก่สิ่งมีชีวิตที่สร้างอาหารเองได้ จากสารอนินทรีย์ส่วนมากจะเป็นพืชที่มีคลอโรฟิลล์
                                    2.1.2 ผู้บริโภค (consumer) ได้แก่สิ่งมีชีวิตที่ไม่สามารถสร้างอาหารเองได้ (heterotroph) ส่วนใหญ่เป็นสัตว์ที่กินสิ่งมีชีวิตอื่นเป็นอาหาร เนื่องจากสัตว์เหล่านี้มีขนาดใหญ่จึงเรียกว่า แมโครคอนซูมเมอร์ (macroconsumer)
                                    2.1.3 ผู้ย่อยสลายซาก (decomposer, saprotroph, osmotroph หรือ microconsumer) ได้แก่สิ่งมีชีวิตขนาดเล็กที่สร้างอาหารเองไม่ได้ เช่น แบคทีเรีย เห็ด รา (fungi) และแอกทีโนมัยซีท (actinomycete) ทำหน้าที่ย่อยสลายซากสิ่งมีชีวิตที่ตายแล้วในรูปของสารประกอบโมเลกุลใหญ่ให้กลายเป็นสารประกอบโมเลกุลเล็กในรูปของสารอาหาร (nutrients) เพื่อให้ผู้ผลิตนำไปใช้ได้ใหม่อีก





 











ภาพที่ 9.2 แผนผังการหมุนเวียนของสารเคมีธรณีชีวภาพ (biogeochemical)

2.2 องค์ประกอบที่ไม่มีชีวิต (abiotic component) ได้แก่
                                    2.2.1 สารอนินทรีย์ (inorganic substances) ประกอบด้วยแร่ธาตุและสารอนินทรีย์ซึ่งเป็นองค์ประกอบสำคัญในเซลล์สิ่งมีชีวิต เช่น คาร์บอน ออกซิเจน คาร์บอนไดออกไซด์ และน้ำเป็นต้น สารเหล่านี้มีการหมุนเวียนใช้ในระบบนิเวศ เรียกว่า วัฏจักรของสารเคมีธรณีชีวะ (biogeochemical cycle) 
                                    2.2.2 สารอินทรีย์ (organic compound) ได้แก่สารอินทรีย์ที่จำเป็นต่อชีวิต เช่นโปรตีน คาร์โบไฮเดรต ไขมัน และซากสิ่งมีชีวิตเน่าเปื่อยทับถมกันในดิน (humus) เป็นต้น
                                    2.2.3 สภาพภูมิอากาศ (climate regime) ได้แก่ปัจจัยทางกายภาพที่มีอิทธิพลต่อสิ่งแวดล้อม เช่น อุณหภูมิ แสง ความชื้น อากาศ และพื้นผิวที่อยู่อาศัย (substrate) ซึ่งรวมเรียกว่า ปัจจัยจำกัด (limiting factors)
                         กระบวนการหลักสองอย่างของระบบนิเวศคือ การไหลของพลังงานและการหมุนเวียนของสารเคมี การไหลของพลังงาน (energy flow) เป็นการส่งผ่านของพลังงานในองค์ประกอบของระบบนิเวศ ส่วนการหมุนเวียนสารเคมี (chemical cycling) เป็นการใช้ประโยชน์และนำกลับมาใช้ใหม่ของแร่ธาตุภายในระบบนิเวศ อาทิเช่น คาร์บอน และ ไนโตรเจน  
                        พลังงานที่ส่งมาถึงระบบนิเวศทั้งหลายอยู่ในรูปของแสงอาทิตย์ พืชและผู้ผลิตอื่นๆจะทำการเปลี่ยนพลังงานแสงให้เป็นพลังงานเคมีในรูปของอาหารที่ให้พลังงานเช่นแป้งหรือคาร์โบไฮเดรต พลังงานจะไหลต่อไปยังสัตว์โดยการกินพืช และผู้ผลิตอื่นๆ  ผู้ย่อยสลายสารที่สำคัญได้แก่ แบคทีเรียและฟังไจ (fungi)ในดินโดยได้รับพลังงานจากการย่อยสลายซากพืชและซากสัตว์รวมทั้งสิ่งมีชีวิตต่าง ๆ ที่ตายลงไป ในการใช้พลังงานเคมีเพื่อทำงาน สิ่งมีชีวิตจะปล่อยพลังงานความร้อนไปสู่บริเวณรอบๆตัว ดังนั้นพลังงานความร้อนนี้จึงไม่หวนกลับมาในระบบนิเวศได้อีก ในทางกลับกันการไหลของพลังงานผ่านระบบนิเวศ  สารเคมีต่างๆสามารถนำกลับมาใช้ได้อีกระหว่าง สังคมของสิ่งมีชีวิตและสิ่งแวดล้อมที่ไม่มีชีวิต  พืชและผู้ผลิตล้วนต้องการธาตุคาร์บอน  ไนโตรเจน และแร่ธาตุอื่นๆในรูปอนินทรียสารจากอากาศ และดิน
                        การสังเคราะห์ด้วยแสง(photosynthesis)ได้รวมเอาธาตุเหล่านี้เข้าไว้ในสารประกอบอินทรีย์ อาทิเช่น คาร์โบไฮเดรต และโปรตีน  สัตว์ต่างๆได้รับธาตุเหล่านี้โดยการกินสารอินทรีย์  เมแทบบอลิซึม (metabolism) ของทุกชีวิตเปลี่ยนสารเคมีบางส่วนกลับไปเป็นสารไม่มีชีวิตในสิ่งแวดล้อมในรูปของสารอนินทรีย์ การหายใจระดับเซลล์(respiration) เป็นการทำให้โมเลกุลของอินทรียสารแตกสลายออกเป็นคาร์บอนไดออกไซด์ และน้ำ การหมุนเวียนของสารสำเร็จลงได้ด้วยจุลินทรีย์ที่ย่อยอินทรียสารที่ตายลงและของเสียเช่นอุจจาระ และเศษใบไม้    ผู้ย่อยสลายเหล่านี้จะกักเก็บเอาธาตุต่างๆไว้ในดิน ในน้ำ และในอากาศ ในรูปของ สารอนินทรีย์ ซึ่งพืชและผู้ผลิตสามารถนำมาสร้างเป็นสารอินทรีย์ได้อีกครั้ง หมุนเวียนกันไปเป็นวัฏจักร


 

ที่มา:http://www.phschool.com/atschool/science_activity_library/images/photosynthesis.jpg



 














3. ระดับการกินอาหาร (trophic levels)
                              ความสัมพันธ์ของการกินอาหารเป็นตัวกำหนดเส้นทางของการไหลของพลังงานและวัฏจักรเคมีของระบบนิเวศ จากการวิเคราะห์การกินอาหารในระบบนิเวศทำให้นักนิเวศวิทยาสามารถ แบ่งชนิดของระบบนิเวศออกได้ตามแหล่งอาหารหลักของระดับการกิน(trophic level)


ภาพที่ 9.3 ตัวอย่างห่วงโซ่อาหาร (food chain) หัวลูกศรแสดงเส้นทางการลำเลียงอาหารจากพืชผู้ผลิตผ่านไปสู่ผู้บริโภคแรกเริ่มที่กินพืช (herbivore) ผู้บริโภคลำดับสอง ผู้บริโภคลำดับสามไปจนถึงผู้บริโภคลำดับสี่ที่กินเนื้อ (carnivore)

                        3.1 ระดับการกินอาหาร และห่วงโซ่อาหาร (trophic level and food web) ลำดับการถ่ายทอดอาหารจากระดับหนึ่งไปสู่อีกระดับเรียกว่า ห่วงโซ่อาหาร (food chain)  (ภาพที่ 9.3) สัตว์พวก herbivore เป็นสัตว์กินพืช สาหร่ายและแบคทีเรีย จัดเป็นผู้บริโภคแรกเริ่ม (primary consumers)  (carnivore) ซึ่งจะกินผู้บริโภค เรียกว่าผู้บริโภคลำดับสอง (secondary consumers) ได้แก่สัตว์เลี้ยงลูกด้วยนม ขนาดเล็ก สัตว์ฟันแทะ นก กบ และ แมงมุม สิงโตและสัตว์ใหญ่ที่กินพืช( herbivores)   ในนิเวศแหล่งน้ำส่วนใหญ่เป็นปลาขนาดเล็กที่กินแพลงค์ตอนสัตว์ (zooplankton) รวมถึงสัตว์ไม่มีกระดูกสันหลังใต้ท้องน้ำ  ระดับการกินที่สูงขึ้นมาอีกคือผู้บริโภคลำดับสาม(tertiary consumers) ได้แก่งู ที่กินหนู บางแห่งอาจมีผู้บริโภคลำดับสี่ (quaternary consumers) ได้แก่นกฮูกและปลาวาฬ
                        ห่วงโซ่อาหารจะไม่สมบูรณ์ถ้าไม่มีผู้ย่อยสลาย(detritivore หรือ decomposer) ได้แก่ จุลินทรีย์ (โพรแคริโอต และ  ฟังไจ)  ซึ่งจะเปลี่ยน อินทรียสารเป็นอนินทรียสาร ซึ่งพืชและผู้ผลิตอื่น ๆสามารถ นำกลับไปใช้ได้อีก พวก scavenger  คือสัตว์ที่กินซาก เช่น ไส้เดือนดิน สัตว์ฟันแทะและแมลงที่กินซากใบไม้ สัตว์ที่กินซากอื่นๆได้แก่ ปูเสฉวน ปลาดุก และอีแร้ง เป็นต้น


ภาพที่ 9.4 ฟังไจ (fungi) กำลังย่อยสลายซากขอนไม้

                        3.2 สายใยอาหาร (food web) ระบบนิเวศจำนวนน้อย ที่ประกอบไปด้วยห่วงโซ่อาหารเดี่ยวๆโดยไม่มีสาขาย่อยๆ ผู้บริโภคแรกเริ่มหลายรูปแบบมักจะกินพืชชนิดเดียวกันและผู้บริโภคแรกเริ่ม ชนิดเดียวอาจกินพืชหลายชนิดดังนั้นสาขาย่อยของห่วงโซ่อาหารจึงเกิดขึ้นใน ระดับการกินอื่นๆด้วย ตัวอย่างเช่น กบตัวเต็มวัยซึ่งเป็นผู้บริโภคลำดับสองกินแมลงหลายชนิดซึ่งอาจถูกกินโดยนก หลายชนิด นอกจากนี้แล้ว ผู้บริโภคบางชนิดยังกินอาหารในระดับการกินที่แตกต่างกัน นกฮูกกินหนูซึ่งเป็นผู้บริโภคแรกเริ่มที่กินสัตว์ไม่มีกระดูกสันหลังบางชนิด แต่นกฮูกอาจกินงูซึ่งเป็นสิ่งมีชีวิตที่กินเนื้ออีกด้วย สิ่งมีชีวิตที่กินทั้งพืชและสัตว์ รวมทั้งมนุษย์ด้วย(omnivore) จะกินทั้งผู้ผลิตและผู้บริโภคในระดับการกินต่างๆ ดังนั้นความสัมพันธ์เชิงการกินอาหารในระบบนิเวศจึงถูกถักทอให้มีความละเอียดซับซ้อนมากยิ่งขึ้นจนกลายเป็นสายใยอาหาร (food web)  (ภาพที่ 9.5)


ภาพที่ 9.5 สายใยอาหารแบบไม่ซับซ้อน ทิศทางหัวลูกศรหมายถึง ใครบริโภคใคร
(ผู้ที่อยู่ตำแหน่งต้นของลูกศรจะถูกกินโดยผู้ที่อยู่ตำแหน่งปลายลูกศร)และ
ทิศทางการ เคลื่อนย้ายของสารอาหารจะถูกส่งผ่านไปตามทิศทางของลูกศร



 











ที่มา: http://upload.wikimedia.org/wikipedia/commons/thumb/7/71/FoodChain.svg/424px-FoodChain.svg.png


ที่มา:http://www.cals.ncsu.edu/course/ent425/images/tutorials/ecology/trophic_levels/foodweb.gif


 

                                                   















ภาพที่ 9. 6 ปฏิสัมพันธ์ระหว่างสัตว์ชนิดต่างๆ ของสังคมในทุ่งหญ้าซาวันนา (Savanna) ในประเทศเคนยา

                        3.3  ปฏิสัมพันธ์ระหว่างประชากรต่างชนิดกัน  (Interspecific Interactions in Community)  
                        สิ่งมีชีวิตทั้งหลายในสังคมต้องมีปฏิสัมพันธ์กัน อาจมีทั้งพึ่งพาและแก่งแย่งกัน ความสัมพันธ์ในรูปแบบต่างๆทำให้สิ่งมีชีวิตมีวิถีชีวิตที่แตกต่างกันซึ่งแบ่งได้เป็น 3 แบบใหญ่ๆได้แก่ การแก่งแย่ง (competition) การล่าเหยื่อ (predation) และภาวะอยู่ร่วมกัน (symbiosis) ซึ่งแต่ละแบบทำหน้าที่เป็นองค์ประกอบของสิ่งแวดล้อมเพื่อปรับตัวด้านวิวัฒนาการ ผ่านทางการคัดเลือกธรรมชาติมา การเรียนรู้ถึงความสัมพันธ์ของสิ่งมีชีวิตในรูปแบบต่างๆดังกล่าว ทำให้เข้าใจถึงการ
เปลี่ยนแปลงประชากรในสิ่งแวดล้อมได้ดีขึ้น
                                    3.3.1 การแก่งแย่งระหว่าง สปีชีส์  (Competition between Species) เมื่อประชากรของสังคมมี สองสปีชีส์ หรือมากกว่าและ อาศัยแหล่งทรัพยากรจำกัดที่คล้ายกันเรียกว่ามี การแก่งแย่งระหว่างปีชีส์เกิดขึ้น

              
ภาพที่ 9.7  การแก่งแย่งระหว่างพารามีเซียม 2 ชนิดในห้องปฏิบัติการ (กราฟบน) เมื่อเลี้ยงแยกกัน    และให้แบคทีเรียเป็นอาหารจำนวนคงที่ทุกวัน ประชากรของพารามีเซียมทั้งสองเจริญถึงจุด carrying capacity แต่ถ้านำพารามีเซียมทั้งสองชนิดมาเลี้ยงไว้ด้วยกัน (กราฟ ล่าง)  P. aurelia  มีการแข่งขันเมื่อได้รับอาหาร และทำให้ P. caudatum สูญพันธุ์ไป
     
                                                3.3.2  การล่าเหยื่อ (predation)  ในชีวิตประจำวัน คำว่า สังคม ดูจะมีความอ่อนโยนละมุนละม่อมเป็นการช่วยเหลือกันอย่างอบอุ่น เรียกว่า community spirit ในทางกลับกัน ความเป็นจริงแบบดาร์วิน (Darwinian Realities) ของการแก่งแย่งและผู้ล่า ซึ่งสิ่งมีชีวิตหนึ่งจะกินสิ่งมีชีวิตอื่นๆ ปฏิสัมพันธ์ระหว่างสิ่งมีชีวิตต่างชนิดกัน เรียกว่า ผู้ล่า(predator) และชนิดที่เป็นอาหาร เรียกว่าเหยื่อ(prey) พืชที่ถูกสัตว์กินเป็นอาหาร และการแทะเล็มหญ้าถึงแม้จะไม่ถูกทำลายทั้งต้นก็จัดเป็นเหยื่อเช่นกัน ลักษณะของผู้ล่าและเหยื่อเป็นองค์ประกอบทางวิวัฒนาการที่จำเป็นต้องอยู่รอด การคัดเลือกโดยธรรมชาติเป็นตัวกลั่นกรองการปรับตัวทั้งของเหยื่อและผู้ล่า เช่นลักษณะการมีอุ้งเล็บ ฟันและ เขี้ยวที่แหลมคม  มีเหล็กไนที่มีสารพิษ หรือมีต่อมพิษ ที่สามารถทำให้เหยื่อสยบลงได้ บางชนิดมีการพรางตัวเพื่อใช้ล่อเหยื่อให้หลงผิดหรือตายใจ
                                                การป้องกันตัวของพืชต่อสิ่งมีชีวิตกินพืช (herbivore) เพราะพืชไม่อาจจะวิ่งหนีได้ จึงต้องมีโครงสร้างที่เป็นหนามและขนแข็ง พืชบางชนิดสร้างสารนิโคตินและสารมอร์ฟีน บ้างก็ผลิตสารเคมีเลียนแบบฮอร์โมนสัตว์ ทำให้สัตว์ที่หลงมากินได้รับอันตรายและเกิดอาการผิดปกติขึ้นในพัฒนาการของร่างกาย หรืออาจถึงแก่ชีวิตได้
                                                สัตว์จะใช้วิธีการหลายอย่างในการป้องกันตัวเองจากผู้ล่า อาทิ เช่น การหลบหนี การซ่อนตัว  การหนีเอาตัวรอดเป็นพฤติกรรมการตอบสนองต่อผู้ล่าอย่างปกติ  นอกจากนี้ยังมีการใช้เสียงเตือน  การเลียนแบบ การเสแสร้งเพื่อหลอกให้เหยื่อตามไป รวมทั้งการรวมกลุ่มเพื่อต่อสู้กับผู้ล่าเป็นต้น


ภาพที่ 9.8 การรวมตัวกัน( mobbing) นกกาสองตัวกำลังร่วมกันขับไล่เหยี่ยวซึ่งมักจะมากินไข่และทำลายลูกอ่อนของอนกกา


ภาพที่ 9.9 วิธีการปกป้องลูกของนกคิลเดียร์ (Killdeer) เมื่อมีสัตว์หรือคนมารบกวน
แม่นกจะแสร้งทำเป็นปีกหักและบินออกจากรังไป เป็นการหลอกล่อเหยื่อให้ตามไป
ผลก็คือทำให้เกิดความปลอดภัยกับลูกอ่อนที่อยู่ในรัง


ภาพที่ 9.10  การพรางตัว (camouflage) กบใบไม้สีน้ำตาลดำทำตัวให้กลมกลืนกับสีของใบไม้แห้งบนพื้นป่า


ภาพที่ 9.11 สีสดใสสดุดตาของกบพิษลูกธนู (poison arrow frogs) ผู้ล่าทั้งหลายรู้พิษสงที่ผิวหนังของกบพวกนี้เป็นอย่างดี ซึ่ง นายพรานแถบอเมริกาใต้ใช้ลูกดอกจุ่มพิษนี้เพื่อปลิดชีพสัตว์เลี้ยงลูกด้วยนมขนาดใหญ่


 

ภาพที่ 9.12  แตน(yellow jacket wasp)(ซ้าย) และ ผึ้ง (cuckoo bee) (ขวา) ซึ่งมีรูปร่างคล้ายกันมาก (Mullerial mimicry) ต่างก็มีเหล็กไนสามารถปล่อยสารพิษออกมา ทำให้ ผู้ล่าไม่กล้าเข้าใกล้
http://images.google.co.th/images?q=    cuckoo+bee&svnum=10&hl=th&lr=)

                                ผู้ล่าจะใช้วิธีการเลียนแบบในหลายด้าน เช่น  ตะพาบน้ำบางชนิดมีลิ้นลักษณะคล้ายกับตัวหนอน ลวงให้ปลาขนาดเล็ก หรือปลาชนิดต่างๆที่ต้องการจะกินเหยื่อเข้าใจผิดและเข้ามาใกล้ปากของตะพาบน้ำ ในที่สุดก็ถูกตะพาบน้ำงับกินเป็นอาหารด้วยขากรรไกรที่แข็งแรง
                       
4. ความสัมพันธ์แบบการอยู่ร่วมกัน (symbiotic relationships) การอยู่ร่วมกันเป็น        ปฏิสัมพันธ์ระหว่างสปีชีส์ ซึ่งสปีชีส์หนึ่ง เรียกว่า symbiont อาศัยอยู่บนอีกสปีชีส์หนึ่ง ซึ่งเรียกว่า โฮสต์ (host) มี 2 แบบ คือ แบบปรสิต (parasitism) และแบบ ภาวะพึ่งพา (mutualism)
                                 4.1 ภาวะปรสิต (parasitism) สิ่งมีชีวิตหนึ่งได้ประโยชน์ในขณะที่อีกฝ่ายหนึ่งได้รับอันตรายโดยปกติ สิ่งมีชีวิตที่มีขนาดเล็กกว่าจะได้รับสารอาหารจากโฮสต์ ซึ่งเป็นรูปแบบพิเศษแบบหนึ่งของการล่าเหยื่อ พยาธิตัวตืด โพรโทซัวก่อโรคไข้มาเลเรีย เป็นตัวอย่างของปรสิตภายใน ส่วนปรสิตภายนอก ได้แก่ยุงดูดเลือดของสัตว์เลี้ยงลูกด้วยนม และ เพลี้ยต่างๆที่ดูดน้ำเลี้ยงจากพืช การคัดเลือกโดยธรรมชาติ เป็นผู้กลั่นกรองความสัมพันธ์ระหว่างปรสิตกับโฮสต์     ปรสิตจำนวนมาก โดยเฉพาะจุลินทรีย์ได้ปรับตัวเป็นตัวเบียฬจำเพาะ (specific host ) 

         ()                                                         ()
ภาพที่ 9.13 (ก) พยาธิตัวตืด (Taenia pisiformis) สามารถทำให้เกิดการอุดตันในลำไส้ (ข) ส่วนหัว       และตะขอของพยาธิตัวตืดใช้ยึดเกาะลำไส้เพื่อดูดอาหารจากผนังลำไส้ของโฮสต์

4.2 ภาวะพึ่งพา (mutualism) เป็นการอยู่ร่วมกันที่ต่างฝ่ายต่างได้ประโยชน์ร่วมกัน เช่น   สาหร่าย ( algae) กับรา(fungi) ในพวกไลเคน (lichen)   ปูเสฉวนและดอกไม้ทะเล ไมคอไรซาในรากพืช  มดอาศัยบนต้นอะเคเซีย (Acacia sp.) และโพรโทซัวอาศัยอยู่ใน ลำไส้ปลวก เป็นต้น

(ก)                                                      ()
ภาพที่ 9.14  () ภาวะพึ่งพา ระหว่างต้นอะเคเซียซึ่งให้ที่อยู่และน้ำหวานที่ปลายใบ  กับ มด คอยป้องกันศัตรู แมลง และเชื้อราที่อยู่ใกล้ๆกับต้นอะเคเซีย (ข) ปูเสฉวน Eupagurus prideauxi  ให้ดอกไม้ทะเลยึดเกาะและพาเคลื่อนที่ ส่วนดอกไม้ทะเล Adamsia palliate  ช่วยพรางตาต่อศัตรูและช่วยล่อเหยื่อเนื่องจากมีเข็มพิษ


ภาพที่ 9.15  ไลเคนบนเปลือกไม้  เป็นการอยู่ร่วมกันของ รา กับ สาหร่าย โดยรา ให้ที่อยู่อาศัยและ  ความชื้น ส่วน สาหร่าย ช่วยสังเคราะห์อาหาร
                       

ภาพที่ 9.16 ภาวะพึ่งพาระหว่างนกเอี้ยงหงอน กับควาย นกเอี้ยงอาศัยการกินอาหารจาก
ปรสิตภายนอก(ectoparasite) บนหลังควาย ส่วนควายได้รับการกำจัดปรสิตออกไป

5. ภาวะอิงอาศัยหรือภาวะเกื้อกูล (commensalism) เป็นการอยู่ร่วมกันของสิ่งมีชีวิต 2 ชนิด ที่ฝ่ายหนึ่งได้ประโยชน์ส่วน อีกฝ่ายไม่ได้และไม่เสียประโยชน์ เช่น พลูด่างกับต้นไม้ใหญ่ กล้วยไม้กับต้นไม้ ปลาฉลามกับเหาฉลาม (shark sucker)

 

ภาพที่ 9.17 ภาวะอิงอาศัยหรือภาวะเกื้อกูล ระหว่างกล้วยไม้กับต้นไม้ใหญ่ (ซ้าย) และพลูด่างกับต้นไม้(ขวา)


ภาพกาฝากมะม่วง
ที่มา: http://www.wattano.ac.th/wattano51/Web_saunpluak/Pic_Fol001250%20up%202550/028กาฝากมะม่วง3.JPG



 












ภาพที่ 9.18 ภาวะอิงอาศัยหรือภาวะเกื้อกูลระหว่างปลาฉลามวาฬกับเหาฉลาม

  




 












Ant tending aphids